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ADAPTIVE LEJA SPARSE GRID CONSTRUCTIONS FOR STOCHASTIC
COLLOCATION AND HIGH-DIMENSIONAL APPROXIMATION

AKIL NARAYAN AND JOHN JAKEMAN

ABSTRACT. We propose an adaptive sparse grid stochastic collocation approach based upon Leja
interpolation sequences for approximation of parameterized functions with high-dimensional pa-
rameters. Leja sequences are arbitrarily granular (any number of nodes may be added to a current
sequence, producing a new sequence) and thus are a good choice for the univariate composite
rule used to construct adaptive sparse grids in high dimensions. When undertaking stochastic
collocation one is often interested in constructing weighted approximation where the weights are
determined by the probability densities of the random variables. This paper establishes that
a certain weighted formulation of one-dimensional Leja sequences produces a sequence of nodes
whose empirical distribution converges to the corresponding limiting distribution of the Gauss
quadrature nodes associated with the weight function. This property is true even for unbounded
domains. We apply the Leja-sparse grid approach to several high-dimensional and problems and
demonstrate that Leja sequences are often superior to more standard sparse grid constructions
(e.g. Clenshaw-Curtis), at least for interpolatory metrics.

1. INTRODUCTION

Stochastic collocation (SC) has become a standard tool for non-intrusively quantifying uncer-
tainty in simulation models that are subject to a degree of uncertainty or randomness. Sources of
uncertainty can include physical stochastic processes, parametric uncertainty or model form uncer-
tainty [42 311, B0]. If the sources of uncertainty can be parameterized by a set of random variables,
the approaches used for uncertainty quantification (UQ) frequently reduce to computational methods
that describe the behavior of a model with respect to those random variables.

In this paper we will focus on the use of stochastic collocation methods that utilize sparse grid
interpolants [36] 43|, 17, [6] to approximate the dependence of model output on unknown model
parameters. Sparse grid stochastic collocation involves constructing an ensemble of random variables
realizations, solving a deterministic physical system for each corresponding realization on the sparse
grid, and using the resulting model output to build an approximation of the model response to the
uncertain parameters. Once constructed, the sparse grid can be evaluated inexpensively to predict
the variability of the physical model with respect to the random parameters.

Obtaining the ensemble of model solutions is usually the most expensive part of the collocation
procedure since the model under consideration is often very complicated (e.g., complex geometry,
multiscale features, stiff time-stepping, etc.). This dominance of model execution time on the com-
putational expense of UQ motivates the need to build approximations of the model response that
require as few model runs as possible. Sparse grids attempt to minimize the number or parameter
realizations by generating ensembles that are geometrically sparse in the state space of the random
variable. Most efficient sparse grid constructions build up the ensemble adaptively by concentrat-
ing model evaluations in dimensions of the paramters space where the sparse grid approximation is
poor [I8] 19, [14].

One of the crucial considerations when building a sparse grid is the choice of ensemble for the
random variable. The sparse grid is constructed via judicious tensorizations of one-dimensional
ensemble grids, and so the identification of these univariate grids is of paramount importance.
Common univariate choices are Clenshaw-Curtis or Chebyshev nodes and Gauss-quadrature-type
nodes.
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The desired characteristics in choosing a composite univariate rule for input into the sparse grid
include:

e efficiency — high interpolation and/or quadrature accuracy with low cardinality sets
e robustness — consistent and increasing accuracy when the grid is refined
e monotonicity — fine-level grids are supersets of coarse-level grids

e granularity — the number of nodes needed for refinement of a grid is as small as possible

Efficiency and robustness are desired when using approximation grids in any context. The mono-
tonicity property is motivated mainly by the high cost of solving deterministic physical simulations
and the sparse grid algorithm: if monotonicity holds, then the tensorized sparse grid construction
has many fewer total nodes. Granularity becomes important when several levels of refinement are
necessary: it is much better to have the ability to add a small number nodes for each refinement
step than to be required to double the number of nodes.

In this paper we propose use of univariate Leja sequences for use in the sparse grid algorithm
for interpolatory high-order and high-dimensional approximation. Leja rules are a sequence of
interpolation/quadrature grids in one dimension that are strongly monotonic and granular: coarse
grids are always strict subsets of fine grids, and refinement proceeds by adding a single node at a
time. Leja sequences are very accurate as we show later, but they are not as efficient as Gauss-type
rules in some cases (e.g., quadrature). Therefore, we argue that Leja sequences are a grid choice
that serves as a good compromise of the above desired characteristics, in contrast to, e.g. a Gauss
quadrature grid that is strong in efficiency and granularity, but very weak in monotonicity.

For a many weight functions of interest (i.e. the random variable probability density function), we
show that (our definition of) weighted Leja sequences produce a nodal sequence whose asymptotic
distribution coincides with the asympototic distribution of Gauss quadrature nodes associated to the
polynomial family orthogonal under the weight function. This result is known for the uniform-weight
case; to our knowledge the weighted versions are novel. Additionally, we show that a contracted
version of weighted Leja sequences are asymptotically weighted Fekete, meaning that their Vander-
monde determinant grows comparably to the largest possible value (Fekete). That these results hold
for unbounded domains is significant as it suggests that Leja sequences will be accurate for nested
interpolatory approximation when the random variable state space is infinite.

In Section [2] we setup the problem and introduce notation and terminology. In Section [3] we intro-
duce Leja sequences and prove the above-mentioned properties. Section [4 develops the methodology
for adaptive sparse grids. Finally, Section [5| shows that the Leja sparse grid algorithm produces
results comparable to well-established sparse grid approximation methods, and in many cases is su-
perior. The proof of our main result concerning the distribution of Leja sequence nodes is relatively
involved, employing results from weighted potential theory; for this reason we leave this until the
end in Section [7 serving somewhat as an appendix.

The first half of this paper (Section|3]) proves certain results about one-dimensional weighted Leja
sequences and compares them to other one-dimensional rules. The second half (Sections |4 and
uses these weighted Leja sequences for building adaptive multivariate sparse grids.

2. SETUP

A model problem in the UQ community that serves as a motivating example is a parameterized
elliptic equation where the parameters Z are random variables:

(1) _% |:a(x7 Z)Z—Z(m7 Z):| = f(z,2), (x,Z)€(0,1)x1,

This model describes the steady-state temperature distribution v in a one-dimensional domain where
the domain has diffusivity coefficient a and experiences an external heat source defined by f. Here x
is a spatial variable taking values in a one-dimensional interval domain. The variable Z is a random
vector with density function w(Z) on domain I, corresponding to a probability measure P on a
complete probability space. The diffusion coefficient a is a model parameter that varies spatially,
but is also influenced by uncertainty. Uncertainty in these kinds of models may arise from, e.g.,
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imprecise knowledge of material parameters or external forcing. Under the assumption that the
equation is well-posed almost surely, the solution u(x,Z) is random, and essentially depends on
(1 + dim Z) variables. One goal in the UQ community is efficient and accurate prediction of u(z, Z)
or some quantities of interest that depend on u (e.g. the temperature variance as a function of space

One popular technique is the generalized Polynomial Chaos (gPC) approach: we assume that the
variation of w with respect to the random parameter Z can be described accurately by a finite-degree
polynomial:

N
u(@,Z) ~ un (2, 2) = Y n(2)dn(2),
n=1
where ¢,, are polynomials that satisfy an orthogonality condition
Blon(2)60 ()] = | 0n(2)6(2) (2l = b

and the u,, are coefficient functions that depend only on the spatial variable x. The determination
of the functions 4, is the challenge, and one straightforward procedure is to use a probabilistic
sampling strategy to compute these coefficients: let z,, for 1 < m < M be given samples of the
variable Z. For each z,,, equation is a deterministic differential equation, and any computational
simulation or experimental setup may be used to obtain u(z,z,,). (Frequently, this solution is a
finite-dimensional quantity rather than a function of a continuum variable z, but this distinction
does not affect the main focus of our discussion.) Once these realizations of u(x,Z) are collected,
then we attempt to find @, (z) such that

N
Zdjn(zm)an(x) zu(x,zm), m=1,..., M.
n=1

If one considers u as a scalar, then this is a linear algebra problem, seeking a vector U that solves:
Au = u.

This problem may be solved by defining ~ in any convenient fashion: interpolation, least-squares
regression, quadrature, or compressive sampling. See, e.g. [40, 4I]. Usually the particular choice
made is dependent on the relationship between M and N (determined by the computational cost of
computing each solution realization) and dependent on some a priori understanding of the accuracy
for the choice.

One major difficulty with this approach is the selection of z,, when dim Z is large. While the
spatial variable x is usually restricted to have dimension less than or equal to 3, it is not uncommon
to have 100 or more parameters as the components of Z. High-dimensional approximation has been
a persistent bottleneck in modern scientific computing. Methods that work very well for a small
number of dimensions are rendered ineffective or impossible to implement in a large number of
dimensions, owing to the curse of dimensionality: exponential dependence of functional complexity
with respect to the parametric dimension (when the functional smoothness is fixed). Tensor product
constructions and space-filling designs adopt this complexity with respect to dimension.

Attempting to circumvent the computationally onerous space-filling property is the main reason to
consider alternatives such as sparse grids. The sparse grid construction still employs tensor product
grids, but it does so in a way that attempts to control the cardinality of the mesh and delays the
curse of dimensionality. Sparse grids are formed by tensorized one-dimensional grids, and therefore
an educated selection of the composite one-dimensional rules is of great importance.

In this paper we are concerned consider high-order interpolatory approximation using a sparse
grid, and we employ weighted Leja grids as the one-dimensional composite rules. Weighted Leja
grids are nested grids (they are a sequence), and we prove that the nodes distribute identically to
the one-dimensional Gauss quadrature rules. Thus, Weighted Leja sequences distribute nodes in a
way that emulates the Gauss quadrature rule, and have the advantage of being nested.
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Gauss-Kronrod [22, 8, [15] and Gauss-Patterson [32] rules are likewise nested interpolatory schemes,
but their computation is usually restricted to special weight functions because computation of the
nested rules is relatively difficult. In contrast, weighted Leja sequences are simple and very easy to
compute (exactly and approximately) even for exotic weight functions.

For the remainder of this paper, we replace the uppercase variable Z (traditionally denoting a
random quantity) with its lowercase counterpart z: stochasticity does not affect our approach so in
principle we may treat the random parameter as a deterministic parameter z with corresponding
weight function w.

3. WEIGHTED LEJA POINTS

In this section we present and establish important properties of univariate Leja sequences. Con-
sider approximation in the scalar variable z over the domain I in the presence of a weight function
w. In the context of this paper, z represents one component of the vector-valued parameter z, I
is the the one-dimensional restriction of I, to the appropriate dimension, and w(z) is the marginal
density of w(z).

A Leja sequence (unweighted) is classically defined [23] as a sequence of points z, € I = [-1,1] C
R for n=1,2,..., such that

N
(2) ZN41 = argmax H |z — 2z,
z€[-1,1] ;2
where the starting point of the sequence zq is arbitrarily chosen in [—1,1]. We note that it is only
sensible to define the above Leja sequences on bounded domains. We list below the properties of
one-dimensional (unweighted) Leja sequences:

e Leja sequences are not unique. The initial point zy may be arbitrarily chosen and the
objective function being maximized need not have a unique maximizer.

e The Leja construction provides an interpolation sequence. Therefore if {z1, ..., 27} are a Leja
sequence, then we require only one more point zg to construct a higher-order interpolant.
This addresses the granularity criterion for grids, and will be useful in minimizing the number
of function evaluations necessary for approximation in high dimensions.

e Maximizing the objective function is equivalent to a greedy determinant maximization
(e.g., [11]). With z1,..., zn—1 specified, let Vy(z) be the N x N interpolatory Vandermonde-
like matrix for the space IIy_1 at the collocation points z1,...,zy-1, 2. (The choice of basis
for Iy 1 does not affect maximization.) Then is equivalent to

zn+1 = argmax |det Vi (2)|
z€[—1,1]
Thus one can view Leja sequences as a greedy D-optimal experimental design[12].

e The Lebesgue constant for interpolation on a Leja sequence grows subexponentially [37].

e Leja sequences are asymptotically Fekete [4]. (This is implied by the subexponentially
growing Lebesgue constant.) Fekete points are those whose Vandermonde determinant is as
large as possible. (These are known to be Gauss-Lobatto nodes in one dimension [13].) The
asymptotically Fekete property essentially means that the Vandermonde determinant of a
Leja sequence grows on par with that of Fekete nodes.

e Any Leja sequence asymptotically distributes according to the Chebyshev (arcsine) measure.
(This is implied by the asymptotically Fekete property [4].)

e In practice, optimization of over a discrete candidate set can be accomplished in compu-
tationally efficient ways [I] and with standard numerical linear algebra routines: E.g., the
row permutation information from a row-pivoted LU matrix decomposition gives the Leja
sequence order, e.g. [5].

The Leja sequences introduced above are quite useful for unweighted polynomial interpolation.
However, in the UQ context we are usually interested in interpolation involving a weight function
(here, the marginal density of the random variables). Therefore, we are also interested in weighted
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Figure 1. Theoretical asymptotic distribution of Gauss quadrature nodes for the family of poly-
nomials orthogonal under weight w, and empirical distributions for the first 50 associated Leja
points. Left: uniform weight w = 1 with limiting (arcsine) distribution. Right: Gaussian density
weight w(z) = exp(—22) with a 50-point Leja sequence, contracted to the origin by a factor of
v/50, along with the contracted limiting distribution of the Gauss quadrature nodes. (See tables

and

Leja sequences. Let w(z) be a continuous and positive weight function on a univariate domain I,
and let

3) v(z) = Vw(z)
be its square root. If I is unbounded, we assume that polynomials are dense in the space of continuous
functions, measured in the v-weighted supremum norm. For example, if v(z) o exp(—|z|*), then we
require o > 1, e.g. [24]. This density assumption is necessary in our context: we cannot hope to
form an accurate polynomial approximation without polynomial density.

A weighted Leja sequence can be constructed via the optimization

N N
(4a) ZN4+1 = argmax / w(z) H |z — z,| = argmax v(z) H |z — zn]| .
zel n—0 zel n—0

In the case where multiple choices of z maximize the objective, for concreteness we choose the one
with smallest magnitude, i.e.,

N
(4b) ZN41 =arg§nin{|2| | ze fTH (W)}, W = max f(2) = maxv(z) li[o\z—zn|~

This formulation still leaves a benign ambiguity when multiple maximizers differ only in sign. In
general there is no standard choice of how to incorporate the weight function into a Leja objective; we
have chosen v = y/w, but alternatives have been proposed [T} B5]. Our choice above is motivated by
some of the properties of this construction that we detail later. We illustrate one of these properties
now: that our weighted Leja rules asymptotically distribute points in a manner identical to w-Gauss
quadrature rules. In Figure [I] we show that the distribution of a univariate 50-point weighted Leja
sequence seems to converge to the distribution of the Gauss points associated with the family of
polynomial orthogonal under the weight w. Therefore, the objective produces points that are
‘approximately’ Gauss nodes, with the additional benefit of being nested. This distribution property
alone does not guarantee that Leja sequences are useful, but we provide several examples in this
paper that illustrate the utility of these sequences.
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Figure 2. Sequential addition of nodes (top to bottom) via iteration on the Leja objective (4]).
Left: A Leja sequence on [—1,1] with v = w = 1 (i.e., unweighted). Right: A weighted Leja
sequence on R with v2 = w(z) = exp(—z2).

We emphasize that unlike the unweighted case , weighted Leja sequences are constructible on
unbounded domains given our assumptions. In Figure 2] we show a graphical illustration of the
iterative Leja procedure that produces a Leja sequence.

3.1. Limits of weighted Leja sequences. A significant concern for the unbounded case with the
weighted Leja sequences we have introduced above is that they ‘do the right thing’, i.e. that they
produce a set of nodes that is desirable from the approximation theory point of viewﬂ

The purpose of this subsection is to show that the weighted Leja sequences we have proposed
produce points whose asympototic distribution is identical to the Gauss quadrature nodes associated
with the corresponding w-orthogonal polynomial family. To be precise, given a classical weight
function w, it is known that there is a another weight function v such that the empirical distribution
of the w-Gauss quadrature nodes converges to the v-weighted potential equilibrium measure; roughly
speaking, v ~ /w, modulo multiplicative polynomial factors. We show that for this same class of
weight functions, the empirical measure of the Leja sequence converges to the same equilibrium
measure. On unbounded domains with exponential weights, v is the square root of w. On bounded
domains with Jacobi-type weights, ¥ is the uniform weight.

Let © be a weight function on I that we will precisely relate to w later; define Q £ —logv. If
v is admissiblﬂ on I, then there is a unique probability measure py that minimizes a weighted
logarithmic energy. This measure ug is the logarithmic potential equilibrium measure of the domain
I in the presence of the external field (i.e. weight) Q. (See Section [7] for a more detailed discussion.)
When v is the uniform measure on a compact interval I, then uz is the arcsine, or Chebyshev
measure. In this uniform case then @) = 0 and we will write uy = py.

For each N € N, let &, v with n = 1,..., N denote the N zeros of the degree-N polynomial
orthogonal under w(z). ILe., &, v are the N-point w-Gauss quadrature nodes. Let z, denote any
sequence of weighted Leja nodes given by . The &, n are a triangular array (n < N) while the
zn are a sequence. We introduce a contraction factor k, defined in the following theorem; this
contraction factor is used to define the empirical (counting) measure for an n-point Gauss (&, n)

! Alternative propositions for weighted Leja points [35] construct points on a compact subset of the domain. These
points are asymptotically optimal if we are interested in approximation with a basis v™p,.But because we are interested
in approximation on an unbounded domain with just vp,, we require samples to be produced on the entire domain.

2v must be admissible in the sense of potential theory: (1) it is a non-negative upper semicontinuous function (2)
INT~1((0,00]) is nonpolar in the sense of potential theory (a polar is ‘negligible’ and has Lebesgue measure 0), and
(3) |2|9(z) — 0 as |z| = oo
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and Leja (z,) grid, respectively:

1 & 1

G

VN = N Zé(kNﬁn,N)’ VJ%’ = N Zd(kNZn)’
n=1

n=1
where 4, is the Dirac distribution centered at z. Our main result in this section shows that for most
classical univariate weight functions of interest, v§ and vk limit to the same measure.

Theorem 3.1. Let w(z) be a weight function on I.

(1) (Generalized Hermite)
Let w(z) = 22 exp(—|2|®) for any « > 1, p > —% on I = R. Define k, = n=/* and
0= exp (—32|%).

(2) (Laguerre)
Let w(z) = z%exp(—|z|) for any s > —1 on I = [0,00). Define k, = n™! and v(z) =
exp (—32).

(3) (Jacobi)
Let w(z) = (1 — 2)%(1 + 2)P for any a, 3 > —1 on [ = [~1,1]. Define k, =1 and v(z) = 1.

In all of the above cases, we have

: G : L
lim v, = puy = lim v,
n—oo n—oo

where equality in the weak sense.

Remark 3.1. The “Hermite” result from the Theorem above also holds for 0 < a < 1. However, since
polynomials are not dense for this weight function [24], it is unclear if one should use polynomial
approximation in this case.

The above theorem states that the Leja sequence produced by produces a nested mesh whose
samples distribute precisely like w-Gaussian quadrature nodes. We emphasize that while this prop-
erty is promising, it does not guarantee a good approximation: for example, one can generate a
grid according to the acrsine measure on I = [—1, 1] whose Lebesgue constant does not grow subex-
ponentially [4]. However, an unweighted Leja sequence is known to have subexponentially growing
Lebesgue constant (which is ‘good enough’ in a sense for approximating very smooth functions). In
practice, unweighted Leja sequence have logarithmically-growing Lebesgue constant. However, to
our knowledge it is presently unknown if weighted Leja sequences have subexponentially growing
weighted Lebesgue constant.

We give a summary of the weights w, contraction factors k,,, and some details about the asymp-
totic measures py in Table [I} The formulas for the exponential weight w(z) = exp(—|z|®) are not
explicit for general «, so we explicitly compute and collect the density and distribution expressions
for various « in Table[2] Finally, the densities associated to uy are plotted for these specials cases
in Figure [3]

We note that by affine scaling, the limits of weighted Leja sequences in Tables [If and [2] for other
types of weights are readily derivable. Il.e., suppose we have a new weight W defined on a new
parameter Z that results from affine scaling of a canonical w, z pair from Theorem [3.1}

Z =T(z) 2 Az + B, W(Z)=w(T""(2)),
for some A, B € R. Then the new limiting density ¢(s) and distribution G(s) for a W-weighted

Leja sequence on the Z domain T'(I) can be expressed in terms of the weighted Leja asymptotics in
Tables [ and 2t

o) = 37 (T7(5)) G(s) = F (7))

for s € T'(I). The contraction factor for Z will be the same as it was for z.
We prove Theorem [3.1] by leveraging a significant result from potential theory: nodal sets that are
‘asymptotically weighted Fekete’ distribute according to the weighted potential equilibium measure
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Class Domain Parameters Weight Contraction k,, Equilibrium weight
Hermite I=R a€[l,00), pe(—3,00) w(z) = 22 exp(—|2|%) k, =n-1e U(z) = exp (—3|2[%)
Laguerre I=10,00) s€(—1,00) w(z) = 2% exp(—2) kp=n"! U(z) = exp (—32)

Jacobi I=[-1,1] a,B € (—1,00) w(z) = (1 —2)%(1+ 2)8 ko=1 =1

Class supp(uz) = [a, b] Distribution F(t) = pz [ (—o0,]] Density f(t) = %

. _ 1 b a—1
Hermite —a=b=[2""'B(%,%)] fe See Table ft) == fli)\ F—==du
Laguerre a=0,b=4 F(t) = 2 arcsin (%) + = /td—1) ft) =2y /42

Jacobi a=-1,b=1 F(t) =%+ X arcsint fey=1= 11_t2

Table 1. Asymptotic distributions and densities to which contracted weighted Leja sequences
(and Gauss quadrature nodes) converge. Given a weighted Leja sequence zn,, the formulae to
which the quantities in this table correspond is given by Theorem [3.1

_ dug
—dt

Density f(t)

t € [=b(a), b(e)]

Distribution F(t) = pg [ (—00,t]]
t € [=b(a), b(a)]

a=1 b=m 1+ Larcsin (1) +t£(t)

a=2 b=2 1+ Larcsin (1) + ££(t)

w(z) = exp(—|z|*) a=3 b= (%)1/3 1+ Laresin (£) + L£(2)
Mo = B | amt b= (DY b Luen () + 40
a5 b=(5) e Luem()+ 40

a=6 b= (%)1/6 1+ Larcsin (1) + Lf(t)

1, log [IH»\/‘l;Tj}
% b2 _ t2
% [ =P+ 2105 [T |
LV =17 (22 4+ 12)

o2 [b (312 + 26%) VBT~ 4 31% log [

% D2 — 2 (8t4 L Ap22 4+ 3b4)

Density function f(t)

Table 2. Explicit formulae for special cases of Hermite/exponential-type asymptotic distributions
[39]. See Table |1} The distribution function F(t) for a« = 2 is plotted in the right-hand pane of
Figure[l] The densities f(¢) for these tabulated values of a are plotted in Figure

4 \
a=1
.| | T ooef| T a=2 .
c —a=3
9 —a=4
-~
) i £ 04afj——o=? |
2 —a=6
>
h
1 . g 02 8
5
A
0 | | 0 | | | | |
0 1 2 3 4 -3 -2 -1 0 1 2 3

Figure 3. Plots of asymptotic densities for contracted weighted Leja (and Gauss) points. Left:
Limiting density for the Laguerre weight w(z) = exp(—z). Right: Limiting density for the ex-
ponential weight w(z) = exp(—|z|*) for various a. See Table [I| for a summary and Table |2] for
explicit formulas.
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[35] B8]. We prove that contracted versions of weighted Leja sequences are asymptotically weighted
Fekete and essentially obtain Theorem as a corollary.

Let V(&o,...,&n) denote the modulus determinant of the polynomial Vandermonde matrix W
on any array of points &,...,&{y. W has entries (W), = 5;“71 for j,k =0,...N. Given a weight
function v and a positive integer N define the maximum attainable value for the following weighted
determinant:

2/(N?+N)

(€0,--EN)EINFL

N
o = max  V(,....én) [J7V (&)
j=0

For any fixed IV, a cardinality-IV point set that achieves the maximum weighted determinant un-
der the bracket is called a weighted Fekete set. It is known that the behavior of this maximum
determinant value has a finite limit, the v-weighted transfinite diameter of I:

5772 lim (577.
N—o00

Any set of points whose asymptotic determinant limits to the transfinite diameter is called a set of
asymptotically weighted Fekete points. In the cases of Theorem the kn-contracted w-weighted
Leja points we proposed in are asymptotically v-weighted Fekete.

Theorem 3.2. In all the cases of Theorem the Leja sequence z, defined by produces a set
of points whose kx-contraction is asymptotically weighted Fekete:

2/(N24N)

N
(5) 1\}2}1& V(zo,Nys-- - 2n,N) H N (25, n) = 0, Zn,N = knzn
n=0

where U is the weight function corresponding to the limit measure in Theorem [3.1].

Theorem [3.2)is the result that we spend the most effort proving. Once this is established, it is well-
known that asymptotically weighted Fekete points distribute according to the weighted equilibrium
measure p. See Section [7] for details and the proof.

3.2. Quadrature with Leja sequences. The construction of Leja points is motivated mainly
by interpolation; however quadrature/cubature in a multidimensional sparse grid framework is very
desirable. To this end, one may simply explicitly integrate an interpolant on Leja points to construct
a quadrature rule.

Consider a weighted Leja sequence z,, constructed using . We need only integrate the inter-
polant constructed from data on the z,. Let {p,}, n =0,..., N — 1 denote family of polynomials
orthonormal under w(z). There are two observations we need: (i) if we assume that w is a proba-
bility density function, then pg = 1, and (ii) even if w is known only empirically and does not have
a representation in terms of classical functions, there are simple and accurate methods to construct
the p,, in one dimension [2T], 15 29]. Given data f, we wish to interpolate at the sites z,, so we
seek the coefficients ¢, solving the linear problem

Ve = f, Vn,m = pmfl(l‘n)'

Since ¢ = V~If, and

/ﬂi cnpn—1(2)w(z)dz = ¢ /Q po(2)w(z)dz = 1,

then we immediately conclude that the first row of the matrix V~! gives us quadrature weights w,
defining the Leja polynomial quadrature rule

N
n=1
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Figure 4. Left: Absolute condition number for Leja interpolatory quadrature rules for various
weight functions w: (top) w o< 1 the uniform density, (middle) w(z) %Io(l + z) + Jo(50 + 50z),
where Jo (Ip) is the (modified) Bessel function of the first kind, (bottom) w(z) o exp(—22) the
Gaussian density. Right: plot of the second weight function, w(z) %Io(l + z) + Jo(50 + 50z).

The superscript ‘1’ indicates that this quadrature rule applies to one-dimensional functions, and the
subscript N — 1 refers to the ‘level’ of the quadrature rule; both of these indicators unnecessary at
the moment, but are meaningful in coming sections.

Naturally we wish to understand whether the Leja quadrature rules are useful in one dimension
before proceeding to use them in higher-dimensional situations. We first verify that the quadrature
rules are stable: the relative condition number of the quadrature rule Q% _; is given by

N N
I{l _ Zn:l |w’ﬂ| - anl Wn
N—1 Z:712[:1 W,

(In particular this metric indicates the presence of negative weights, which make the computation
susceptible to catastrophic cancellation.) The left-hand pane of Figure || graphs sk, , for three
choices of w: the uniform density on [—1,1], an oscillatory weight w on the same domain, and
finally the Gaussian density function w o« exp(—22) on R. We see that the quadrature rules are all
relatively well-conditioned.

The accuracy of the rules are considered in the following examples:

1

= 2) = cos (1 + 10023
15101 (z— ) f2(2) ( )

f1(2)

We perform one-dimensional global interpolation and refinement for these functions using the (uni-
form) Leja grids, nested Clenshaw-Curtis grids, and Gauss-Patterson grids. Figure [5| shows results
in the discrete £2 norm, the discrete maximum norm, and the quadrature error. If f is the interpo-
latory approximation, then on a 10%*-sized Clenshaw-Curtis grid x,, with weights v,,, these metrics
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Figure 5. Left: Maximum errors for the one-dimensional Runge function f; with Leja, Clenshaw-
Curtis, and Gauss-Patterson nested refinements. Right: Maximum hierarchical surplus at each
level.

are defined as

\/z Up, (f1 (zn) — ﬁ(mn)>2 (Discrete ¢% error)
max ‘fl(xn) - fl(xn)

> v (fil@a) = Filan)

The left-hand pane of Figure [5| shows that the Leja grid is no less accurate than any of them in
the maximum norm (being as accurate as the Clenshaw-Curtis grid). A discrete £2 error metric
behaves similarly. The Leja sequence performs noticeably worse than the other two for the quadra-
ture metric. We sacrifice quadrature accuracy in order to gain some dexterity in high-dimensional
refinement: with the Clenshaw-Curtis or Gauss-Patterson grid every refinement doubles the size of
the (univariate) rule, whereas with the Leja procedure we can stop refinement at any size we choose.
That the Gauss-Patterson grid performs so poorly for the maximum norm approximation is not
surprising: this grid is constructed only with the attempt of obtaining a high degree of polynomial
integration, not for interpolatory approximation.

The relatively good behavior of a Leja grid is not useful unless we have a good error metric from
the hierarchical surplus. Now consider function fs, and the results in Figure [6] where we show the
behavior of the surplus versus all the error metrics. The left-hand pane shows that the maximum
Leja surplus is an excellent indicator of error in all three norms. The right-hand pane shows similar
results for the Clenshaw-Curtis grid, but two observations are apparent: first, if using the surplus as
a refinement technique, the surplus when N = 257 does not accurately reflect the actual error at the
next level N = 513. This is true even if one were to employ a type of Richardson extrapolation to
estimate the error. Second, the surplus indicator is a very conservative estimate of the error. In such
a case, it is likely that we will refine more than is necessary in order to obtain an approximation.
Both of these observations do not hold for the Leja surplus, which is sharper estimate of the error,
and may be refined with arbitrary size.

(Discrete maximum error)

(Quadrature error)

3.3. Barycentric Interpolation. A numerically robust method for computing polynomial inter-
polants is furnished by the Barycentric interpolation formula (see [3] for an accessible introduction).
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Figure 6. Left: Errors and the hierarchical surplus at each level for a one-dimensional Leja re-
finement of oscillatory function f2. Right: Errors and surplus using a Clenshaw-Curtis refinement.

This method is computationally efficient with respect to computing and evaluating the interpolant,
and is stable so long as the interpolation problem itself is stable.

On a set of nodes z1, ..., 2y, the degree-(N — 1) polynomial interpolant of a function f(z) with
data f,, = f(zy,) is given by

N b’VlfTL
Zn:l Z—2n
N bn
Zn:l Z—2Zp
where £,,(z) are the cardinal Lagrange interpolation basis and b,, are the Barycentric weights, both
defined as

N
(6) p(z) = Z faln(z) =

-1

ta(z) = [ =2, b= | [ (20— 2m)

m#n m#n

The Barycentric formula @ allows evaluation of the interpolant p(z) in only O(N) operations once
the weights b,, are precomputed. In addition, the symmetry of this formula allows one to renormalize
all the weights b,, by the same constant without affecting the interpolant. It is known that when the
interpolation nodes z, correspond to a well-conditioned interpolation operator, then the weights b,
all have comparable magnitude, leading to a well-conditioned numerical procedure.

With Leja sequences, we are essentially interested in v-weighted polynomial interpolation. (Recall
(B).) This means that while we want to produce a polynomial interpolant f, we do so by interpolating
the function v f using v-weighted polynomials. With this in mind, it is straightforward to show that
the v-weighted analogue of (6]) is the following polynomial formula:

1 N ZN by Ui fn

v o n=1 v—uv,
U(Z) ;Unfng (Z) - ZN by v,

n=1 z—z,

(7) p(2) =

)

where v, = v(z,), £V are v-weighted Lagrange polynomials, and b¥ are v-weighted Barycentric
weights:

2y (2, b=

n Un

6(2) =

For a sequence of Leja nodes generated according to , we use the Barycentric weights b, given
above to perform interpolation. We observe in practice that with this normalization that the weights



LEJA SPARSE GRID HIGH-DIMENSIONAL INTERPOLATION 13

by are all of comparable magnitude, just as we expect them to be for a well-conditioned interpolation
problem.

Note that we do not necessarily avoid any troublesome numerical computations in the reformu-
lated case ; we have merely recast the problem into one that appears numerically well-conditioned.
The actual process of interpolating f by an unweighted polynomial on an unbounded domain will
still be mathematically ill-conditioned.

4. SPARSE GRIDS WITH UNIVARIATE LEJA RULES

The approximation of a quantity depending on a finite number of Euclidean-like parameters
is difficult when the parametric dimension d is large. It is well-known that an approximation to
an r-times differentiable function converges with a rate of O(N~"/4) 2]. Let f : I, — R for
I'. C R? be a function that we wish to approximate and I', be the domain of the possibly high-
dimensional parameter z upon which the function depends. Spatial and temporal variables are
modeled separately. For simplicity we assume that I', is an isotropic tensor-product domain, so
that the one-dimensional restricted variables zp with z = (z1,...,2z4) all take values on the same
restricted one-dimensional space.

When f is approximated via a sampling procedure, the curse of dimensionality is readily apparent:
let 2! C R be an n-point nodal set in one dimension with associated quadrature weights wy. A
tensorization of this quadrature rule over d dimensions yields the nodal set

(8) ===, N = |29 = n.

The growth of the size of the tensorized set =% usually makes it infeasible for usage in high-

dimensional approximation methods. (This is true both in cases when d is not small and fixed
and n is increased, or when n is fixed and d is increased.) There are alternatives to tensor con-
structions, but approximation with any space-filling design requires O(n?) samples, where n is the
number of samples ‘per dimension’.

An alternative to space-filling designs is the popular sparse grid, so named because of its geo-
metrically dispersed distribution in I',. Like tensor constructions, sparse grids tensorize univariate
nodal arrays, but sparse grids also attempt to delay the impact of the curse of dimensionality by
taking only certain combinations of tensor products. We delay introduction of sparse grids until
Section [f} for now we concentrate on motivating our choice of univariate rule: Leja sequences.

4.1. Common univariate rules. The sparse grid construction requires specification of a univariate
grid =}, for [ = 0,1,.... Several choices for these univariate grids work well, and among the most
popular are a Clenshaw-Curtis (CC) grid, or grids associated with Gauss quadrature rules [I7]. For
concreteness, we consider the one-dimensional finite interval [—1,1]. Then, for example, we may
choose CC and we have the following grid for any level {:

== {Zl,n}i:[lzl ’ Rl,N;+1—n = COS (H) ,

for n = 1,...,N;, and N; = 2! + 1. This particular choice for Z} is popular for two reasons:
(i) E; C Ej41 allowing for hierarchical approximation and adaptive refinement with as few model
evaluations as possible, and (ii) the sequence Z; is known to be both an excellent interpolatory and
quadrature grid. Of course, one apparent concern is that || — |Z;| = Niy1 — N; = 2!, which
grows exponentially with the level [. This means that each stage of refinement requires addition of
a large number of points. In general, a large number of nodes is not necessarily adverse so long as
the resulting grids have some optimality regarding, e.g., maximum degree of polynomial integration
33].

An alternative univariate rule that is competitive for quadrature purposes is the Gauss-Patterson
grid [32] wherein one constructs a grid that is a subset of a given Gauss quadrature grid, and satisfies
some polynomial integration optimality conditions. However, it is not always possible to construct
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such grids depending on (i) the cardinality of the subset X; and (ii) the weight function w. Even
when such construction is possible, construction of the Gauss-Patterson grid requires implementation
of a nontrivial algorithm, and it is frequently easier to precompute and store the grids, making the
method inflexible with respect to the choice of density w.

There are several locally adaptive strategies for sparse grids that are also successful in combating
the curse of dimensionality [20, 25]. One method that has enjoyed recent success is the locally
adaptive, high order, generalized sparse grid construction [20]. In this setup, one uses a high-
order Lagrange polynomial basis as the univariate building block for a local high-order polynomial
approximation; because the approximation is local, targeted adaptive strategies that utilize the grid
hierarchical surpluses are naturally applicable and effective. However, the adaptation is usually
(locally) uniform and it is well-known that high-order polynomial approximation on a uniform grid
raises computational challenges.

We propose use of (weighted) Leja sequences as univariate building blocks for an adaptive Smolyak
sparse grid constructions. Leja sequences can easily add an arbitrary number of samples at each
stage, and have good interpolatory and quadrature properties, making them excellent ingredients
for the Smolyak algorithm. Leja sequences have been used a sparse grid building blocks before:
[10, @], but we believe this is the first investigation into adaptive hierarchical approximations for
high-dimensional approximation.

Having discussed univariate Leja sequences at length in Section [3] we may now construct standard
sparse grids using Leja sequences as building blocks. Let z = (z1,...,24) € I, € R% be a random
variable with probability density function w(z) : I, — R, and assume that the components of X are
mutually independent so that I, is a tensor-product domain

d
I, = ®Izj.
j=1

We let w; : I.; — R denote the marginal PDF of z;, so that w(z) = H?:l w(z). Sparse grids [6]
approximate f via a weighted linear combination of basis functions

(9) L[f] = fa =D v Ui(2)
k=1

The approximation is constructed on a set of anisotropic grids =y on the domain I, where £ =
(I1,...,lq) € N% is a multi-index denoting the level of refinement of the grid in each dimension.
These rectangular grids are Cartesian product of nested one-dimensional grid points =; = {&; : 7 <

Eg:Ell X"'Eld

The number of points m; of a one-dimensional grid of a given level is dependent on the growth rate
of the quadrature rule chosen.

The multivariate basis functions W, are a tensor product of one dimensional basis functions.
Adopting the multi-index notation used above we have

d
(10) Vei(z) = [ ¢enin(zn)

where i determines the location of a given grid point. There is a one-to-one relationship between ¥y,
in (@ and We; and each Wy ; is uniquely associated with a grid point ze; = (€o, iys- - -+ E04,iy) € -
Many different one-dimensional basis functions )y, ;, (§,) can be used. In the following we employ
one-dimensional Lagrange polynomials for the functions ¢, ;...

The multi-dimensional basis spans the discrete space V, C L?(1)

Ve =span{WU,; :i€ K} Ke={ieNd:ip=0,...,my, ,k=1,...,d}
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These discrete spaces can be further decomposed into hierarchical difference spaces
d
We=Ve\ Ve P Ve,
n=0
The subspaces W, consists of all basis functions W ; € Vp which are not included in any of the spaces
Vi smaller than Vp, i.e. with k < £ with < the lexicographic partial ordering on multi-indices. These
hierarchical difference spaces can be used to decompose the input space such that

o0 o0
V=@ wd 1)= @ D W= B W
k<t k1=0 ka=0 keRd
For numerical purposes we must truncate the number of difference spaces used to construct V.
Traditional isotropic sparse grids can be obtained by all hierarchical subspaces W, with and index
set that satisfy

(11) L={e:1e, <1}

Given a truncation, such as the a priori one above or one which has been determined adaptively,
f can be approximated by

(12) fo= Z fe, fe= Z ve; Vei(z)
el i€,
where Zp = {i: Up; € We}.
Here we note that the vgj are the coeflicient values of the hierarchical product basis, also known
as the hierarchical surplus. The surpluses are simply the difference between the function value and
the sparse grid approximation at a point, not already in the sparse grid. That is

ve; = f(zei) — falze), LNeL=10

The particular choice of sparse grid in this paper is one constructed with univariate hierarchical Leja
points: the sequence of points that we use for each dimension to evaluate the surplus and construct
the interpolant is a univariate Leja sequence. In this way, the point sets z,; are nested, and the
number of points to add at each level can be as small or large as we wish. (Le. the Leja choice
allows a great deal of granularity for refinement.)

4.2. Dimension adaptivity. The dimension adaptive algorithm begins with a low-level isotropic
sparse grid approximation with a set of subspaces representing the current approximation £ and
the set of active subspaces A that indicate the levels for potential refinement. Often £ = Wy and
A= {Ws,,k=1...,d}. We then chooses Wy € A with the largest error indicator 7, and refine
that subspace. Here we define the error indicator 7, as

2
(13) = [ traets) - [ (o) | =3
Iz r LeA

The indicator ¢, measures the contribution of the subspace £ to the variance of f, and the global
indicator n measures the contribution of all active subspaces to the variance of f,. These indica-
tors are calculated by transforming the Lagrange interpolant on each hierarchical subspace into a
Polynomial Chaos Expansion that is orthogonal to the (possibly mixed) distribution weight w(z).
The cost of this transformation is linear in terms of the number of subspace points [7]. The chosen
subspace for refinement with index £ is refined by adding all indices Wy with k = €+e,,n=1,...,d
that satisfy the following admissibility criterion

(14) C—epelfor1<k<dl>1

z

The active set A is then rebuilt by adding each subspace corresponding to the indices from .
This process continues until a computational budget limiting the number of model samples (grid
points) is reached or a global error indicator drops below a predefined threshold. Pseudo-code for
the dimension adaptive algorithm is shown in Algorithm [T}
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The INDICATOR and TERMINATE routines in Algorithm [I| control which subspaces are added to
the sparse grid via the use of a subspace error and global error metric. The indicators respectively
provide estimates of the contribution of a subspace to reducing the error in the interpolant, and the
error in the entire interpolant.

Algorithm 1 INTERPOLATE[f(z),L,A,7,n]— fn

1: For a given £ the points in the sparse grid are = := (J,.» Ze.

2: The number of sparse grid points are N = #Z=

3: while NOT TERMINATE[A,N,7,n] do

4: W .= argmaxyy, c 4 Ve % Determine the subspace with the highest priority
A=A \ W % Remove W from the active set

L=LUW

J = REFINE[W,,C] % Find all admissible forward neighbors of W

~e := INDICATOR[W,| V Wy € J % Calculate the priority of the neighbors
9: A := AU T % Add the forward neighbors to the active index set

10: end while

5. NUMERICAL EXAMPLES

We consider several multidimensional examples below that compare the Smolyak-Leja algorithm
with a more standard Clenshaw-Curtis-Smolyak algorithm. Effectively, we see that the Leja con-
struction is competitive (usually superior) to Clenshaw-Curtis when an interpolation metric is used.
However, they appear suboptimal when a quadrature metric is evaluated. This is not surprising as
Leja sequences are constructe with the goal of interpolation and not necessarily for quadrature.

Throughout these examples we compute discrete /5 errors using 100,000 random samples taken
in a Monte-Carlo fashion from the distribution of the input variable z.

5.1. Random oscillator. This section investigates the relative performance of the sparse grids
when approximating the output from a model of linear oscillator subject to external forcing with six
unknown parameters. That is,

d*z dz
(15) W(t,z) + T + kx = f cos(wt),
subject to the initial conditions
(16) x(0) = zg, 2(0) = xy,

where we assume the damping coefficient ~y, spring constant k, forcing amplitude f and frequency
w, and the initial conditions zg and x; are all uncertain. We solve analytically to allow us to
avoid consideration of discretization errors in our investigation.

Let us choose our quantity of interest to be the position z(T") of the osciallator at T' = 20 seconds
and let z = (v, k, f,w, xg, z1) where v € [0.08,0.12], k € [0.03,0.04], f € [0.08,0.12], w € [0.8,1.2],
xo € [0.45,0.55], z1 € [—0.05,0.05]. For this choice of random parameters any parameter realization
in I, will produce an underdamped harmonic oscillator.

Figure[7]compares the ¢5 accuracy in the sparse grid interpolants obtained using Clenshaw-Curtis
nodes and Leja nodes. Although both univariate rules have similar interpolation properties in
one-dimension, the one-at-a-time nestedness of the Leja rule produces, in this higher-dimensional
setting, an approximation that is significantly more accurate than the approximation based upon
the Clenshaw-Curtis quadrature rule.
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Figure 7. Convergence of RMSE in the sparse grid approximation of the oscillator position with

respect to the number of model evaluations.

5.2. Borehole model. For the next numerical demonstration, consider the following model of water
flow through a borehole

2nT, (H, — Hy)
(17) f(z) = P po
IOg(T/Tw) (]‘ + log(71/1w)r2 Kuw + f)
where the unkonwn parameters are uniform random variables z = (z1,...,2s) with the following

bounds: z; := r, € [0.05,0.15] (meters) denotes the radius of borehole, zo := r € [100,50000]
(meters) the radius of influence, 23 := T, € [63070,115600] (meters?/years) the transmissivity of
upper aquifer, z4 := H,, € [990,1110] (meters) the potentiometric head of upper aquifer, z5 := T} €
[63.1,116] (meters?/years) the transmissivity of lower aquifer, 26 := H; € [700,820] (meters) the
potentiometric head of lower aquifer, z7 := L € [1120,1680] (meters) the length of borehole, and
zg = K, € [9855,12045] (meters/year) the hydraulic conductivity of borehole.

Figure [§| compares the accuracy of sparse grids based upon the univariate Clenshaw-Curtis and
Leja nodes. Again the Leja interpolation sequence produces a more accurate interpolant for a given
number of function evaluations, but suffers when evaluating quadrature quantities such as the mean
shown in the left-hand pane. In this case as with many others, the Clenshaw-Curtis quadrature rule
produces a more accurate estimate of the mean of the function. This statement is consistent with
the one-dimensional results shown in Figure

—e— clenshaw-curtis —e— clenshaw-curtis
—e— uniform-leja —e— uniform-leja

10* 10° 10° 10* 10* 10° 10° 10*
Number of model simulations M Number of model simulations M

Figure 8. Convergence of the mean and RMSE in the sparse grid approximation of the borehole
model with respect to the number of model evaluations.
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5.3. Heterogeneous diffusion equation. In this section, we consider the heterogeneous diffusion
equation in one-spatial dimension subject to uncertainty in the diffusivity coefficient. For d > 1
random dimensions:

d du
(18) ~ 7 [a(x,z)dx(x,z)} =1, (z,z)€(0,1)x1,
subject to the physical boundary conditions
(19) u(0) =0, wu(l)=0

Furthermore assume that the random diffusivity satisfies
d
(20) a(z,z) =a+ o, Z Ve Ok(T) 2k
k=1

where {\,}4_, and {¢x(x)}{_, are, respectively, the eigenvalues and eigenfunctions of the covariance

kernel
(1 — xz)T
12
The variability of the diffusivity field is controlled by o, and the correlation length [. which
determines the decay of the eigenvalues A;. Here we wish to approximate the solution w(1/3,z) when
d =40, 0, =0.021 and I, = 1/14 and 2 € [-1,1], k = 1,...,40 to be independent and uniformly
distributed random variables. We solve non-intrusively: for each node z,, on our sparse grid,

Cu(x1,29) = €xp {—

—e— clenshaw-curtis —e— clenshaw-curtis
—e— uniform-leja —e— uniform-leja

€4,10°

10°15 > 3 4 105 2 3 4
10 10 10 10 10 10 10 10
Number of model simulations M Number of model simulations M

Figure 9. Convergence of variance and RMSE in the sparse grid approximation of the solution
to the diffusion equation with respect to the number of model evaluations

we use a finite-element discretization in x to compute the solution. The comparison between Leja
and Clenshaw-Curtis Smolyak construction is shown in Figure 0] In this case, the Leja construction
only performs marginally better than the CC approach for interpolation, and exhibits a now-familiar
difficulty with quadrature. We explain this difference in the following way: for this equation, we
certainly have dimensional anisotropy because the eigenvalues Ay decay. However, if we plot the
parameter indices [ for the subspaces W that contribute significantly to the solution, we will see an
ellipsoid shape in index space. Thus, extra refinement performed by CC in certain directions is not
wasted because these degrees of freedom can properly resolve mixed terms in parameter space. In
this example, the granularity offered by Leja sequences is not needed or utilized.

5.4. Resistor network. Consider the electrical resistor network shown in Figure [34). The
network is comprised of d = 2P resistances of uncertain ohmage and the network is driven by a
voltage source providing a known potential V[;. We are interested in determining how the voltage
V shown in Figure [I0] depends on the d = 2P resistances, which we take as random parameters
that are independent and identically distributed Gaussian random variables with mean g = 1 and
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Figure 10. Resistor network

standard deviation o = 0.005. Note for this value of o, the probability that we encounter negative
resistances is extremely small, and so apart from the obvious modeling error of possible negative
resistances, no numerical difficulties are introduced. I.e. none of the sparse grid points or random
samples used to generate the error resulted in a negative resistance. In this example we set d = 40
and set the reference potential V) = 1.

—e— normal-leja —e— normal-leja
—e— genz-keister —e— genz-keister

107 1 2 3 4 107 1 2 3 4
10 10 10 10 10 10 10 10
Number of model simulations M Number of model simulations M

Figure 11. Convergence of the Mean and RMSE in the sparse grid approximation of V' with
respect to the number of model evaluations.

In this case our comparison is not with CC, but with a nested Genz-Keister rule, which is one of
the the standard ways to to peform nested interpolation and quadrature under a Gaussian weight
[16]. Here our Leja rule is generated on an infinite domain with univariate weight function w(z;) =
exp(—(z; — u)?/(20?)). In Figure [11] we see significant interpolatory improvement with the Leja
rule, and even the quadrature results are competitive in this example.

6. SUMMARY

We have used Leja interpolatory grids as one-dimensional composite rules for adaptive Smolyak
sparse grid construction. In one dimension, Leja rules are excellent interpolation grids and are a
sequence, allowing one to generated nested rules with arbitrary granularity. We have shown that
for several classical one-dimensional weight functions of interest, a corresponding weighted Leja
rule produces a sequence whose empirical distribution asymptotically coincides with the limiting
distribution for the Gauss quadrature nodes of the same family.

Using Leja rules to build up sparse grids in multiple dimensions grants the user a greater dexterity
in adaptive refinement compared to more standard composite rules such as Clenshaw-Curtis. We
have shown via several examples that the Leja rule can outperform standard high-order Smolyak
constructions in interpolatory metrics, but are suboptimal when considering quadrature metrics.
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Design of Leja-like rules that are effective for approximating integrals will be the subject of future
investigation.

7. PROOF OF THEOREM ([3.2)

7.1. Weighted potential theory. In this section we give the proof of Theorems and
Indeed, if we show Theorem then well-established results imply Theorem We recall our
notation: w is a given weight function associated to z. v is the square root of w. v is related to w
through Theorem and is essentially the square root of w, ignoring polynomial factors.

The proof of Theorem [3.2] relies on results from weighted potential theory. Below we describe
only the bare minimum below in order to show our results. Potential theory is frequently explored
in the complex plane C, but we will restrict ourselves to subsets of C lying on the real axis. An
excellent exposition of univariate weighted potential theory with comprehensive historical references
is given in [35].

Let domain I C R with non-negative weight function v be given. On rather mild assumptions
on v and I then there exists a unique probability measure denoted pz under which a weighted
logarithmic energy for Q = —log v is minimized:

. 1
@) Hi = ir%ﬂ/[ /Ilog = efatmyag) i au®)

- argin [ 10w utman - 2 [ Q@aute)]

A common physical analogy of the above is to find the minimum-energy electrostatic charge distri-
bution (measure) in a region I when an external electrostatic field @ is applied. The measure ug is
the weighted equilibrium measure of I in the presence of the field ). Even if I is unbounded, uz
always has compact support.

A discrete version of the above optimization problem is furnished by the concept of Fekete points.
An array of points which maximizes a weighted Vandermonde matrix determinant is called a set of
Fekete points; this weighted determinant is a discrete, unnormalized Monte-Carlo-like estimate of
the negative exponential of the integral in . A set of points &g, ..., &, is an array of v-weighted
Fekete points if it satisfies

(22) {€o,...&n} = argmax V(zo, ..., z,) H n"(z;) = argmax H |25 — 2k U(25)V(2k),
j=0

Z205--+3%n 205--3%n 0<j<k<n

where V(zg, ..., z,) is modulus determinant of the (n + 1) x (n + 1) Vandermonde matrix W with
entries W, s = z; for 0 < r;s < n. Fekete sets are not necessarily unique, and are notoriously
difficult to compute exactly. However, Fekete points are excellent interpolation/approximation nodal
sets. The n — oo limiting behavior of the weighted Vandermonde determinant for Fekete nodes is
described by the weighted transfinite diameter §; (= weighted logarithmic capacity [28]). Let V,
denote the maximum weighted determinant from achieved by Fekete points. Then

. 1/m, -
(23) nlLII;O (Vo) = 0z,
where m, 21424 ---+n = w Any triangular array of nodes whose determinant behaves

like is called asymptotically weighted Fekete, alluding to the fact that the determinant is not
exactly maximum, but is asymptotically comparable to Fekete points.

The connection between Fekete nodes and the equilibrium measure is established by the following
result: if a triangular array of nodes {fj,n}j <n is asymptotically weighted Fekete, then its empirical
measure distributionally converges to the weighted equilibrium measure:
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Lemma 7.1 ([38,[35]). Suppose &;, is a triangular array of points satisfying

1/my,

n11_>H010 v (507717 s 7£n,n) H v (gj,n) = 05.
j=0

Then
. 12”:5 o
ngrgon - i — Mo
j=

where 8, is the Dirac mass centered at z.

Here (and elsewhere when discussing convergence of measures) equality is in the weak-* sense.
Our strategy is to first show Theorem that a contracted version of the w-weighted Leja points
from are v-weighted asymptotically Fekete. This will allow us to immediately use Lemma to
conclude Theorem 311

To proceed, we will need the notion of Chebyshev constants. Given a potential-theoretic admis-
sible weight v on I, the weighted Chebyshev constant of order n is

" =t {7 @pa@ll; | palz) = 2"+ qu1(2) ¥ guor € P
where || - ||7 is the sup-norm on the domain I, and P" is the space of polynomials of degree n or less.
1/n
The sequence of constants { (Tén)) } is a decreasing sequence with a limit:
1/n 1/n
inf (Tén)> = lim (Tén)> L1
n n—oo

This limit is called the weighted Chebyshev constant [28], and coincides with the transfinite diameter
03 in the unweighted case, but is distinct in general weighted scenarios. Note that by definition,

(24) 0" (2) (2" + -1 (2D = (70)" -

for any ¢,,_1; € P"~!. In general, the relation between the Chebyshev constant 75 and the transfinite
diameter dz is given by

(25) T = 0 €xp (/s Q(z) dua(@) : S = supp iz

For the Jacobi, Hermite, and Laguerre cases mentioned in Theorem [3.1} our goal is to prove the
result . Our contraction proofs are different for the cases of bounded I versus unbounded I. We
first consider the bounded Jacobi case.

7.2. Jacobi case. We prove that the Leja maximization scheme produces nodes whose limiting
distribution is the unweighted equilibrium measure, or the arcsine measure. For the unweighted case
we have U = 1, the contraction is k, = 1 (and so is omitted), and the transfinite diameter ¢ and the
Chebyshev constant 7 are identical:

(26) =71
We begin by considering the proof assuming , 8 > 0. We have v(z) = f(*/28/2)(z) = (1—2)*/2(1+
2)P/2 for a, > 0 over I = [—1,1]. We will need the following constants:

C1 = Cala, B) 2 ||/ <o

(Ta/21,18/21)

Fe2BR(z) | .
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With these constants, we have

(a/2,8/2) (Te/21,[B/21)
) _ fera) g @),
-« C, - C1Cy

We now note that [«/2] and [(/2] are integers, and for shorthand we write v = [«/2] + [5/2].
Then the right-hand side of the above equation is a monic polynomial (modulo sign) of degree .
Therefore, we have

n j—1

n j—1
Vizoy...y2n) = H H |z — zi| > CL?HU(Z]') H |25 — 2kl
j=1 k=0

j=1k=0
1 n
= a1l
Cy e

v(2) H |z — 2]
k

=0

1

1 n Jj—1
> H f((o‘/ﬂ’m/ﬂ)(z)nhfzﬂ
Cres j=1 k=0 I
1 - 7M™y
> It =
crez 11 iy
Thus, we have
"
M {C&CJ <V(z0,-.-,2n) < oy X V(zo,...,xn)
We raise all the above to the 1/m,, power, which yields
. 1/my, _
nh_)rrgo V(20 .-, 2n)] >r=90
. 1/my, <
nh_}rrgo [V(20,--524)] <6

We have thus proven that Jacobi-weighted Leja sequences for «, § > 0 are v-asymptotically Fekete.
For —1 < «, # < 0, we proceed without loss under the assumption that both o and /3 are negative.
In this case then &y # +£1 is arbitrarily chosen so that

z1 = argmaxv(z)|z — z|.
z

But since v is infinite at the endpoints £1, then the maximum is achieved at one of these points,
say z;1 = +1. Then the Leja iteration continues:

29 = argmaxv(z)|z — zol|z — 21/
z

Now since z; = +1, then the last term is identical to (1 — z), and we may absorb this term into the
weight, giving a more explicit formula:

2y = argmax(1 — 2)®/2H (1 4 2)8/2|2 — zy|.
z
But since /2 + 1 > 0, then the maximum (infinity) is now achieved at z = —1, which becomes zs.
Now we choose z3 and again combine the terms |z — 21| and |z — 22| into the weight function:

2
z3 = argmax(1 — 2)®/2+1(1 4 z)o/2+1 H |z — 2]
’ e
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Proceeding in this way, future Leja points are chosen according to

n—1
2z, = argmax f(@/2H1A/241) () H |z — 2]

k=0
k#£1,2

In other words, we choose z, as a Leja optimization with a new weight function f(®/2+5LA/2+1)
whose parameters are «/2 + 1 > 0 and /2 + 1 > 0. This effectively reduces the problem to the
case where «, 8 > 0. Then as before, this Leja sequence is asymptotically (unweighted) Fekete and
so has empirical measure that converges to the arcsine measure pu.

7.3. Hermite case. In this section, I = R (so we write | - ||; = || - ||) and w(z) = 2% exp(—2|2|?).
(Compared to Theorem in this section we have redefined z < 2%/®z to make the computations
cleaner.) The contraction factor is k, = n~/®. As usual, define v(z) = \/w(z). The limit weight
v from Theorem is ¥(z) = exp(—|z|*). For this v, it is known that the weighted Chebyshev
constant is related to the weighted transfinite diameter by the relation

(27) exp (—210) Ty = 5.
See e.g., [27, [28]. We choose a weighted Leja sequence of points z, according to . The negative
log-weight of ¥ is @ = |2|®, and it is a homogeneous function with homogeneity exponent «:
Q(cz) = c*Q(2), Ve>0,2€C
Then the following are easily verified: for any n > O:
(28) v (nl/az) =" (2), " (n_l/az) =0(2)
Given the Leja sequence z, from , then for each n we define progressively contracted versions of
the grid:

— 1/ s
Zjn ="n /zj7 jn=1...

We will only need z;, for j < n: we view z;, as a triangular array of points with j < n. We note
that one can easily transform between one contracted set of nodes and another:

1

n—1\""

Zjn = Zjn—1
J n J ’

which in turn implies that for our particular choice of family of weight functions:

0" (2jn) = 0" (

Zjn—1) = =0(21) = 0(z)
We wish to prove that the array z;, is v-weighted asymptotically Fekete. I.e., we wish to prove
1/my,

n
(29) lim ||detV (20 .- 2n,n)l H " (25.n) = 0z,
§=0

n—oo
We first consider the case with the parameter p > 0. Using the explicit Vandermonde determinant
formula yields the following formula that we wish to prove:
1/my,

= 05

n j—1
(30) lim (9" (z0,n) H 0"(2jn) H |Zjn — 2k
k

n—00
=0

J=1
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As with the Jacobi case, showing that the limit is < §z is straightforward from the definition of dz,
so we concentrate in the inequality >. We have

n j—1 n 4 j—1
(31) 7 (z0) [T7"zin) T1 125 = 20l = 0Cz0) [ 077/ 0(2) ] 125 = 2l
j=1 k=0 j=1 k=0

(2)

For the term (a), we note that z; # 0 for j > 1 since p > 0. Therefore, we may write this term as

(a) = |ZJ| " u(z) H‘ZJ*ZH

(aa)

(ab)

To compute lower bounds for terms (aa) and (ab) we will need the following notation: for the
v-weighted equilibrium measure, we have

(32) S = supp py = [—¢,d, S, = [—nl/%,nl/%} :

The constant c is 2'/“b(a), with b(a) given in the “Hermite” case of Table [1} or in Table
To bound (aa), we know that z; was computed from the optimization . This allows us to derive
an upper bound for the magnitude of these weighted Leja points.

Lemma 7.2. For each j, we have the following bound for term (aa):
(33) |27 > (M + ) #/ %

Proof. We make use of the following result [27] that compactifies the set on which the supremum
norm of a weighted polynomial “lives” for our exponential weights:

(34a) [9(2) (z" + gn-1)llg = [19(2) (z" + gu-1)ls, » V Gn-1 € P
(34b) [07(2) (z" + gn-1)llg = 10" (2) (2" + gn-1) s » YV n-1 € P
where S and S,, are given by (32)). Note that z; is chosen as in (4)) with

i1 i1 i1
v(z) [T 125 = 2l = [[o2) T |2 — 2l #9(2) [ [ 12 = 2
k=0 k=0 k=0

If 4 is an integer, then the argument under the norm is a v-weighted monic polynomial of degree
p + j. Thus, the extremum of the argument is achieved on the set A, ;, which implies that the
smallest-magnitude maximizer as stipulated in satisfies z; € A,4;. The result follows.

If 1 is not an integer, then consider the function

F(2) = 1M H|zfzk|

We know that z; is a maxmizer of |2|“~™ f(z). Let 2, be the smallest-magnitude maximizer of f(z).
Suppose |z;| > |z4|; since g — M < 0 we have

25" £ (zg) <Dzl M F(z) < 2T f (20,

which is a contradiction since z; maximizes the norm of z#~M f(z). Therefore, |z;| < |z.|. But
z.» maximizes f, which is a v-weighted polynomial of degree M + j. Therefore, by (34a)) we have
24 € Apr44. This in turn implies z; € Apryj, and again follows. O

We likewise have a bound for the (ab) term:
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Lemma 7.3. For every j, we have the following bound for term (ab):

J+u)/

(35) v(z;) H |2 — 2| > (T )]+Ma

where c is the constant from (3 .
Proof. Since, by (), z; maximizes the left-hand side of (35]), we are concerned with bounding

j—1 j—1
Z)H\z—zk\ Z)H|Z—Zk|
k=0 k=0

We contract z < j~1/%z to obtain
j—1
(36a) 2Hu(z) H |z — zi]|| = JUTH/ || 2299 (2 H |z — 2k j
k=0
We also have the following properties:
(36D) min z#~M = =M
z€S
(36¢) ol =1

Thus we have

-1 j—1
14)
o) [T 1~ =l @ o) [T 1z - =
k=0 k=0
j—1
j(j+u)/a z“T)j(z) H |z — 2k ]
k=0

j—1
> j(j+u)/a zugj(z) H |z — Zlc,j|
(B1S13)) 1
> (J+H)/O¢m My (2 H |z — le|
" 1 »
> ](J+u)/am ZMUJ+M(2> H |2 — 211

j—1
j(j+u)/a 1 zMﬂjJrM(z) H |z — 2k

cM—p

) 1 )

(G+n)/ _\I+M
> jUtn am (Tv) .
O
With these two lemmas obtained, we can bound term (a) from (31)):
i1
(a) = |z 7"v(z) [ ] |25 — 2l

k=0

(33)

- (M+j “/%ﬂ H|ijzk

jtm/e )M

(M + j)miocM
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We can therefore bound the entire weighted determinant from :

n j—1 n J—1
7™ (20n) [ [ 7" (z50) [ 1250 = 2hnl = 5(20) [ 077/ 0(2) [ 25 — 2
j=1 k=0 j=1 k=0
(a)
n i+ /a
~ —i J j+M
> 0(z e L (1)
= ( 0)]];[1 (M-F])#/QCM( )
" n/o " i 1/«
v ey | ]I | e
e (o B IG) | @
j=1 j=1
We now raise the result to the 1/m,, = ﬁ power. The first two bracketed terms have the

following limit:

24
" i an(ntD)
lim | [[ =1
n—o0 e (M + j)
13 Ivfnl
lim {—v} met
n—oo L ¢

The logarithm of the last bracketed term has the limit
1/a7 2/ (n(n+1))

. j _ 2y, 1 J J
nh—>H01010g H (n) N oznh—{gonJrIZl(n)lOg (n)

j=1

Il
Qo
o\
>,
8
5}
o
8
Q.
5

1
2ce
Therefore, we have
1/my, 1/my,
n n
lim | V(20m,---s2nn) H 0(2jn) = lim [0"(20,n) H (zj,n) H'ZJ”

n—o00 o n—00 iy
j= j=

1
> Ty €Xp (—2> = 03,
«

and so we have proven , that the weighted Leja points are asymptotically weighted Fekete.

For the case u < 0, we may repeat arguments for the Jacobi a, 8 < 0 case: pu < 0 implies that
node z; = 0 is chosen (assuming zo # 0), which then reverts the w-weighted Leja objective (4)) to
one where p > 0.

7.4. Laguerre case. The Laguerre result for weighted Leja sequences defined by can easily be
obtained by following the argument in Section so we omit the details. We only mention that for
weights of the form ¥(z) = exp(—|z]) on [0, 00), we can directly obtain from (25)):

= /s

Le, holds with o = 1 [26]. With this, the remainder of the proof follows in precisely the same
fashion as the Hermite case.
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